Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis

Amruta Joshi-Pangu, † François Lévesque, † Hudson G. Roth, † Steven F. Oliver, ‡ Louis-Charles Campeau, † David Nicewicz, ‡ and Daniel A. DiRocco*, †

†Process Research & Development, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, United States
‡Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

Supporting Information

ABSTRACT: The emergence of visible light photoredox catalysis has enabled the productive use of lower energy radiation, leading to highly selective reaction platforms. Polypyridyl complexes of iridium and ruthenium have served as popular photocatalysts in recent years due to their long excited state lifetimes and useful redox windows, leading to the development of diverse photoredox-catalyzed transformations. The low abundances of Ir and Ru in the earth’s crust and, hence, cost make these catalysts nonsustainable and have limited their application in industrial-scale manufacturing. Herein, we report a series of novel acridinium salts as alternatives to iridium photoredox catalysts and show their comparability to the ubiquitous [Ir(dF-CF3-ppy)2(dtbpy)](PF6).

INTRODUCTION

In the past decade, visible light photoredox catalysis has revolutionized the manner in which chemists approach new bond formations. Polypyridyl complexes of ruthenium and iridium are among the most widely utilized photocatalysts due to their unique photophysical properties such as long excited state lifetimes and large redox windows (Figure 1). For example, the photophysical properties of ruthenium tris-(bipyridine) (2) have been thoroughly studied. Ru(bpy)32+ has a long-lived excited state lifetime (1000 ns) and excited state redox potentials of $E_{1/2}(III^*/II) = -0.81$ V and $E_{1/2}(II/ I) = +0.77$ V vs SCE (Table 1) that allow it to engage in a variety of oxidative and reductive processes.

[Ir(dF-CF3-ppy)2(dtbpy)](PF6) (1), initially reported for OLED and water-splitting applications, has likewise become one of the most widely used photocatalysts in recent years. While it bears many similarities to Ru(bpy)32+, it offers a longer-lived excited state lifetime (2500 ns) and greatly expanded redox window ($E_{1/2}(Ir(III^*/II)) = 1.21$ V and $E_{1/2}(Ir(III^*/IV)) = -0.89$ V). Owing to the low abundance of iridium in earth’s crust (0.001 ppm), Ir-based photocatalysts are viewed as neither cost-effective nor sustainable. From an industrial perspective, organic-based photocatalysts represent a cost-effective and sustainable approach to photoredox catalysis. Inspired by the unique reactivity of [Ir(dF-CF3-ppy)2(dtbpy)](PF6) (1), we were interested in developing an organic photoredox catalyst scaffold that is robust, has a useful redox window, and is easily synthesized on a commercial scale. Highly reducing organic photoredox catalysts, such as 10-phenylphenothiazine (PTH; $E_{1/2} = -2.1$ V vs SCE) have shown utility in replacing transition-metal complexes such as Ir(ppy)3 ($E_{1/2} = -1.7$ V vs SCE) in reductively initiated reactions, due to their similar excited state reduction potentials. No similar scaffold has been demonstrated to replace [Ir(dF-CF3-ppy)2(dtbpy)](PF6) in reactions initiated via oxidation.

Initially, we considered using the traditional xanthene-based scaffold upon which fluorescein, rose bengal, and eosin Y are based. However, their narrow redox window, low solubility in typical organic solvents, pH dependence, and susceptibility to bleaching have rendered this class of catalysts less effective. Acridinium-based photocatalysts appear to obviate many of these pitfalls, as they have extended redox windows in comparison to other organo-photocatalysts, are insensitive to the pH of the reaction medium, and are soluble in a range of organic solvents. 9-Mesityl-10-methylacridinium perchlorate (3), pioneered by Fukuzumi, has been utilized effectively in...
a variety of transformations, most notably in the anti-Markonikov addition of nucleophiles to olefins. While uniquely applicable to chemistries that require strong single electron oxidants, it is limited in many transformations due to its weakly negative ground state reduction potential (\(E_{1/2}^0(\text{C}/\text{C}^-) = -0.57 \text{ V vs SCE}\)). Furthermore, its strongly positive excited state reduction potential (\(E_{1/2}^0(\text{C}/\text{C}^-) = +2.06 \text{ V vs SCE}\)) can lead to substrate decomposition through unselective oxidation processes. Studies have shown that catalyst 3 undergoes demethylation and is prone to nucleophilic attack, leading to degradation and bleaching of the catalyst chromophore.2 We hoped to overcome these shortcomings by designing acridinium catalysts with enhanced stability and attenuated excited state reduction potentials. Herein, we describe a modular series of readily accessible novel acridinium photocatalysts with increased physical stability and expanded redox windows.

RESULTS AND DISCUSSION

A series of substituted acridinium salts were synthesized to probe the relationship between structure and the physical properties of these novel catalysts. The acridinium nitrogen was aryalted to avoid the competitive demethylation previously observed with the corresponding N-methyl catalyst. The presence of electron-donating substituents on the acridinium core results in longer excited state lifetimes (8.9–18.7 ns) and, in the case of catalysts 6–8, a more negative ground state reduction potential in comparison to the parent catalyst 3 (Table 1). In particular, tetramethoxy-substituted acridinium 8 was measured to possess a ground state redox potential (\(E_{1/2}^0(\text{C}/\text{C}^-) = -0.84 \text{ V vs SCE}\)) comparable to the excited state redox potential of \([\text{Ir}(\text{dF-CF}_3\text{-ppy})_2(\text{dtbpy})]([\text{PF}_6])\) (\(E_{1/2}^0(\text{C}^+/\text{C}^-) = -0.89 \text{ V vs SCE}\)).

With these promising results in hand, we next investigated the reactivity of these catalysts in the decarboxylative conjugate addition of Cbz-proline (9) to dimethyl maleate (10), which is known to be catalyzed by \([\text{Ir}(\text{dF-CF}_3\text{-ppy})_2(\text{dtbpy})]([\text{PF}_6])\) (Scheme 1).11 In the presence of the Fukuzumi catalyst 3, very low conversion to product was observed. Given the measured photophysical properties of the new acridinium catalysts, base-promoted deprotonation of Cbz-proline and single electron transfer of the carboxylate (hexanoate, \(E_{1/2}^0(\text{red}) = +1.16 \text{ V vs SCE}\)) and single electron reduction of the resultant \(\alpha\)-acyl radical (\(\alpha\)-acyl radical, \(E_{1/2}^0(\text{red}) = -0.60 \text{ V vs SCE}\)) upon Michael addition should be thermodynamically favorable (Figure 2).11 Gratifyingly, high yields were obtained when Cbz-proline was reacted with dimethyl maleate in acetonitrile using the substituted acridinium salts 4–8 (Scheme 1). Catalysts 7 and 8 performed exceptionally well, consistent with their more negative ground state reduction potentials (Table 1, entries 7 and 8).

We chose catalyst 7 for further studies due to its high catalytic activity and straightforward synthesis (Scheme 2, Figure 3, and Tables 2 and 3).12 To determine the feasibility of using this catalyst on a larger scale and avoid problems associated with scale in batch photochemistry, we further studied the reaction using a flow reactor.13 In an attempt to improve

| Table 1. Photophysical Properties of Photocatalysts 1–8 |
|---|---|---|---|---|---|---|---|
| entry | photocatalyst | \(E_{1/2}^0(\text{C}/\text{C}^-)\) (V) | \(E_{1/2}^0(\text{C}^+/\text{C}^-)\) (V) | \(E_{1/2}^0(\text{C}/\text{C}^-)\) (V) | \(E_{1/2}^0(\text{C}^+/\text{C}^-)\) (V) | excited state lifetime \(\tau\) (ns) | excitation \(\lambda_{\text{em}}\) (nm) | emission \(\lambda_{\text{em}}\) (nm) |
| 1 | \([\text{Ir}(\text{dF-CF}_3\text{-ppy})_2(\text{dtbpy})]([\text{PF}_6])\) (1) | -0.89 | +1.21 | +1.69 | -1.37 | 2300 | 380 | 470 |
| 2 | \([\text{Ru(bpy)}_3]([\text{PF}_6])_2\) (2) | -0.81 | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 3 | acridinium (3) | +2.06 | -0.57 | -0.82 | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 4 | acridinium (4) | +2.08 | -0.59 | -0.82 | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 5 | acridinium (5) | +1.90 | -0.57 | -0.82 | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 6 | acridinium (6) | +2.01 | -0.71 | -0.82 | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 7 | acridinium (7) | +1.65 | -0.82 | +1.3 ns, \(\tau_{\text{exc}} = 12.3\) ns | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |
| 8 | acridinium (8) | +1.62 | -0.84 | +1.3 ns, \(\tau_{\text{exc}} = 8.9\) ns | +0.77 | +1.29 | -1.33 | 1100 | 452 | 615 |

\(\text{Excited state reduction potentials were estimated from ground state redox potentials and the intersection of the absorption and emission bands.}^{10}\)

\(\text{Determined by cyclic voltammetry in acetonitrile versus SCE. See the Supporting Information.}^{11}\)

Scheme 1. Decarboxylative Conjugate Addition of Cbz-Proline to Dimethyl Maleate

Table 2. Catalytic Results

<table>
<thead>
<tr>
<th>catalyst</th>
<th>% yield</th>
<th>5</th>
<th>71</th>
<th>66</th>
<th>69</th>
<th>86</th>
<th>88</th>
<th>20 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 DOI: 10.1021/acs.joc.6b01240

J. Org. Chem. 2016, 81, 7244–7249
productivity, higher reaction concentrations were examined but proved detrimental to the reaction rate. Catalyst loading had little to no effect on the reaction rate and yield increased with increasing reaction temperature, albeit with significant concomitant catalyst degradation.14 Furthermore, the observed rate of Cbz-proline consumption was significantly faster than that of dimethyl maleate (Figure 3). Ultimately, increasing the amount of dimethyl maleate from 1.0 to 1.5 equiv while running the reaction at 40 °C resulted in optimal conditions for the flow process (Table 3). We obtained an 89% yield (HPLC assay) of the desired product with a 60 min residence time (Figure 3).

To gain a further understanding of the large difference in reactivity between the Fukuzumi catalyst 3 and catalyst 7, we monitored their respective concentrations at different residence times. While catalyst 7 did show some decomposition over the course of the reaction, Fukuzumi catalyst 3 was completely degraded within 2 min (Figure 4). This observation further underscores the effectiveness of the alterations to the parent mesitylacridinium scaffold to enhance the stability of this important class of photocatalysts.

In conclusion, we have developed a series of 1,3,5,6-substituted acridinium salts as organic alternatives to transition-metal-based photocatalysts that combine a useful redox window and higher chemical stability. The tetrasubstituted catalysts can be obtained in a single step from the corresponding triarylamines and have shown catalytic performance comparable to that of [Ir(dF-CF\textsubscript{3}-ppy)\textsubscript{2}(dtbpy)]\{PF\textsubscript{6}\} in the decarboxylative conjugate addition of Cbz-proline to dimethyl maleate. Given the sustainable, cost-effective, and robust nature of these novel catalysts, we plan to continue evaluating their performance in photochemical reactions with an eye toward their future implementation in manufacturing processes.

Scheme 2. Synthesis of Acridinium Salt Photocatalyst 7

![Scheme 2. Synthesis of Acridinium Salt Photocatalyst 7](image)
temperature stabilization, the lamp was ignited, and the reactor was either heated or cooled. Upon
was nitrogen (40 mbar) to prevent introduction of oxygen. The reactor was prepared. The resulting yellow solution was degassed by bubbling
μ pyrrolidine-2-carboxylic acid (20 mg, 0.08 mmol), dimethyl maleate (0.012 mmol), 2,6-lutidine (1.2 mmol), biphenyl (0.1 mmol), acetonitrile (10 mL). The reaction yield was calculated via HPLC using biphenyl as internal standard.

EXPERIMENTAL SECTION

General Methods.
All reactions were carried out under nitrogen outside the glovebox. 3,6-Di-tert-butyl-9-mesityl-10-phenylacridin-10-ium was synthesized via a reported method. 11 9-Mesityl-10-(4-methoxyphenyl)amino)benzoic acid (10.8 g, 39.5 mmol) and polyphosphoric acid (32.4 mL) was heated to 110 °C for 3 h. The solution was poured onto ice (1000 mL), and the precipitate was filtered and washed with water (2 x 200 mL). The precipitate was dissolved in hot EtOAc (1.5 L), filtered, and evaporated to afford 2,7-dimethoxyacridin-9(10H)-one (6.6 g, 25.9 mmol, 65.4% yield) as a dark green solid.

In an oven-dried 250 mL round-bottom flask were charged 2,7-dimethoxyacridin-9(10H)-one (5.6 g, 21.94 mmol), iodosobenzene (3.75 g, 18.38 mmol), copper(I) iodide (0.350 g, 1.838 mmol), 2,2,6,6-tetramethylpiperidine-3,5-dione (0.677 g, 3.68 mmol), and K2CO3 (5.08 g, 36.8 mmol) in DMF (86 mL). The round-bottom flask was equipped with a condenser, sparged with N2 for 20 min, and heated at 120 °C under N2 for 48 h. The reaction mixture was cooled to room temperature, diluted with water, transferred to a separation funnel, acidified with aqueous HCl, extracted with dichloromethane, and concentrated. The crude residue was purified by chromatography on silica gel using 20% EtOAc/hexanes to yield 2,7-dimethoxy-10-phenylacridin-9(10H)-one (4.2 g, 12.67 mmol, 69.0% yield) as a yellow powder.

In an oven-dried 1000 mL round-bottom flask under nitrogen were charged 2,7-dimethoxy-10-phenylacridin-9(10H)-one (4.2 g, 12.67 mmol) and THF (420 mL, dried over 4A MS), and the reaction mixture was stirred for 30 min. A solution of mesitylimagnesium bromide (65 mL, 65.0 mmol) was added slowly at room temperature. The reaction mixture was stirred at room temperature for 24 h and at 50 °C for 24 h and then cooled to room temperature. The solution was quenched with dilute NaHCO3 solution. This solution was extracted with DCM (3 x 200 mL). The combined organic extracts were washed with brine, dried over Na2SO4, and filtered, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel, with CH2Cl2/MeOH as eluent, to afford a brown solid. This solid was dissolved in Et3O (150 mL) and stirred while a solution of tetrafluoroboric acid diethyl etherate (660 μL, 20 mL of diethyl ether, 1.2 equiv) was added slowly.

The residue was purified by preparative reverse phase HPLC (C-18), with MeOH/water + 0.1% TFA as eluent, to give 0.8 g of a yellow solid, which was stirred with a solution of tetrafluoroboric acid diethyl etherate (300 μL, 20 mL of diethyl ether, 1.2 equiv) twice. After filtration 9-mesityl-2,7-dimethoxy-10-phenylacridin-10-ium tetrafluoroborate (0.65 g, 1.247 mmol, 98.4% yield) was obtained as a yellow solid.

1H NMR (500 MHz, CDCl3): δ 7.94–7.82 (om, 3H), 7.77 (br s, 2H), 7.55–7.50 (br s, 2H), 7.50–7.47 (s, 2H), 7.31 (s, 2H), 7.28 (s, 4H), 2.49 (s, 3H), 1.90 (br s, 6H). 13C NMR (126 MHz, CDCl3): δ 159.1, 157.5, 140.2, 137.6, 137.3, 136.2, 132.1, 131.8, 131.5, 129.8, 129.4, 128.5, 122.1, 103.6, 56.4, 21.5, 20.5. 19F NMR (470 MHz, CDCl3): δ −153.2. HRMS: calcd for C49H32BF3NO8, 434.2115; found, 434.2140.
9-Mesityl-3,6-dimethoxy-10-phenylacridin-10-ium Tetrafluoroborate (6). In a 500 mL three-neck round-bottom flask was placed a mixture of 3-methoxyaniline (12.78 g, 104 mmol), 2,2,6,6-tetramethylheptane-3,5-dione (14 g, 54.8 mmol), and copper(I) iodide (0.878 g, 4.61 mmol), and the mixture was stirred with a solution of tetrafluoroboric acid (88% yield) as a yellow solid. This TFA salt was dissolved in methanol (5 V) and the mixture was heated at 80 °C for 3 h. The solution was poured onto ice (2000 mL), and the precipitate was filtered and washed with water (2 × 200 mL) and EtOH (102 mL). The mixture was heated to 110 °C for 3 h. The solution was added slowly, and the mixture was heated to 80 °C. After 18 h the reaction mixture was cooled and washed with NaBFin (0.2 M, 3 × 200 mL) and water (2 × 600 mL). To the organic layer was added MTBE (2400 mL slowly) until a precipitate started to form. The mixture was seeded, and then an additional 3000 mL of MTBE was added slowly and this mixture was stirred for 30 min. The mixture was filtered, and the solid was washed with MTBE and dried under nitrogen stream, yielding a bright orange solid (44 g, 71% yield).

1H NMR (600 MHz, CDCl3): δ 6.90 (s, 2H), 6.83 (t, J = 2.1 Hz, 1H), 6.61 (d, J = 2.2 Hz, 2H), 6.48 (d, J = 2.1 Hz, 2H), 6.18 (d, J = 2.2 Hz, 2H), 3.92 (s, 6H), 3.85 (s, 6H), 3.48 (s, 6H), 2.37 (s, 3H), 1.83 (s, 6H). 13C NMR (151 MHz, CDCl3): δ 168.4, 163.3, 163.2, 160.8, 144.9, 140.0, 137.7, 136.6, 132.2, 127.2, 113.5, 105.7, 103.0, 97.7, 92.9, 57.2, 56.7, 56.4, 21.3, 20.3. 19F NMR (470 MHz, CDCl3): δ −153.4. HRMS: calcd for C30H29BF4NO2+ 554.2537; found, 554.2527.

9-Mesityl-1,3,6,8-tetramethoxy-10-phenylacridin-10-ium Tetrafluoroborate (8). A dried three-necked round-bottom flask was charged with 1-bromo-3,5-dimethoxybenzene (50.0 g, 230 mmol), 3,5-dimethoxyphenylboronic acid (42.3 g, 276 mmol), potassium 2-methylpropyn-2-olate (83 g, 737 mmol), reactant 5 (47.7 g, 46.1 mmol), and 1,1'-biphenyl-2-yl)[di-tert-butylphosphine (6.87 g, 23.04 mmol). The reagents were added under reduced pressure, and the vessel was back-filled with argon. Then anhydrous toluene (750 mL) was added and the reaction mixture was heated at 80 °C for 3 h. Then iodobenzene (94 g, 461 mmol) was added and the mixture was heated at 80 °C for 48 h. The mixture was cooled to room temperature and diluted with water (250 mL), and the organic layer was concentrated in vacuo. The crude product was recrystallized from MTBE/heptane in the ratio of 1/3 (2 V/6 V), affording N-(3,5-dimethoxyphenyl)-3,5-dimethoxy-N-phenylaniline (65.0 g, 164 mmol, 71.0% yield) as a gray solid.

In a 500 mL round-bottom flask were placed N-(3,5-dimethoxyphenyl)-3,5-dimethoxy-N-phenylaniline (10.00 g, 27.4 mmol) and trifluoromethanesulfonic acid (4.11 g, 27.4 mmol) in 1,4-dioxane (100 mL). To this solution was added 2,4,6-trimethylbenzoyl chloride (10.50 g, 57.5 mmol), and the mixture was stirred at 80 °C for 30 min. Under nitrogen, and the reaction mixture was heated to 60 °C, the reaction mixture was cooled and 1 L of water added followed by 1.5 L of MTBE. Layers were separated and washed with MTBE and brine to obtain tris(3,5-dimethoxyphenyl)amine as a brown solid (39 g) in 81% yield.

Tris(3,5-dimethoxyphenyl)amine (41 g, 96 mmol) and 2,4,6-trimethylbenzoyl chloride (37 g, 202 mmol) were dissolved in chlorobenzene (300 mL). Triflic acid (8.51 g, 96 mmol) was added slowly, and the mixture was heated to 80 °C. After 18 h the reaction mixture was cooled and washed with NaBFin (0.2 M, 3 × 200 mL) and water (2 × 600 mL). To the organic layer was added MTBE (2400 mL slowly) until a precipitate started to form. The mixture was seeded, and then an additional 3000 mL of MTBE was added slowly and this mixture was stirred for 30 min. The mixture was filtered, and the solid was washed with MTBE and dried under nitrogen stream, yielding a bright orange solid (44 g, 71% yield).

1H NMR (600 MHz, CDCl3): δ 6.90 (s, 2H), 6.83 (t, J = 2.1 Hz, 1H), 6.61 (d, J = 2.2 Hz, 2H), 6.48 (d, J = 2.1 Hz, 2H), 6.18 (d, J = 2.2 Hz, 2H), 3.92 (s, 6H), 3.85 (s, 6H), 3.48 (s, 6H), 2.37 (s, 3H), 1.83 (s, 6H). 13C NMR (151 MHz, CDCl3): δ 168.4, 163.3, 163.2, 160.8, 144.9, 140.0, 137.7, 136.6, 132.2, 127.2, 113.5, 105.7, 103.0, 97.7, 92.9, 57.2, 56.7, 56.4, 21.3, 20.3. 19F NMR (470 MHz, CDCl3): δ −153.4. HRMS: calcd for C30H29BF4NO2+, 554.2537; found, 554.2527.

DOI: 10.1021/acs.joc.6b01240

J. Org. Chem. 2016, 81, 7244−7249
97.9, 92.7, 57.2, 56.6, 21.3, 20.4. 19F NMR (470 MHz, CDCl3): δ −153.5. HRMS: calcd for C32H33BF4NO4+, 494.2326; found, 494.2342.

■ ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01240.

1H and 13C NMR spectra and photophysical and electrochemical measurements of photocatalysts (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail for D.A.D.: daniel.dirocco@merck.com.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

A.J.-P. is a Merck Research Laboratories Postdoctoral fellow. This research was supported by Merck Research Laboratories. A.J.-P. thanks the catalysis and automation group for their encouragement. We thank Rebecca Ruck (Merck) for helpful discussions and proofreading of this paper. Photophysical measurements were performed in the UNC-ERFC Instrumentation Facility established by the UNC-EFRC (Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011).

■ REFERENCES

(6) During the preparation of this paper an organic photocatalyst with redox potentials similar to those of [Ir(dF-CF3-ppy)2(dtbpy)] (PF6)2 was reported. See: Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873–877.

(12) Both tetrasubstituted acridiniums can be prepared in a single step from the corresponding triarylamidine derivative. See the Experimental Section.

(14) Catalyst degradation at 60 °C was much more rapid than that at room temperature.